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The solution of a se t  of different ia l  equations for  unsteady heat  conduction of a d i s p e r s e  
med ium is ana lyzed and a c o m p a r i s o n  is  p re sen ted  with exper imenta l  data f rom seve ra l  
au thors .  

The se t  of different ia l  equations for  uns teady hea t  conduction in a d i s p e r s e  medium [1] is based  on a 
model  r e p r e s e n t a t i o n  which ca l l s  for  imaging of the m o s t  essent ia l  por t ion  of the p r o c e s s  which is e x t r e m e -  
ly  difficult  to de sc r ibe  in a r igo rous  ma themat i ca l  manner .  In se lec t ion  of the model it  is not poss ib le  to 
obtain an a p r i o r i  qttantitative e s t ima te  and, a t  t imes ,  even a quali tat ive es t ima te  of the val idi ty  of s i m -  
pl i fying a s sumpt ions .  Intuit ive physica l  cons idera t ions  which fo rm the bas i s  for  model se lect ion,  and a r e  
wr i t t en  in the fo rm of different ta l  equations,  mus t  be ver i f ied  by ana lys i s  of the solution and c o m p a r i s o n  
with exper imenta l  data.  Often, however ,  even c o m p a r i s o n  of exper imenta l  and theoret ica l  data is l imi ted.  
He re  it  is n e c e s s a r y  to note that a g r e e m e n t  between theore t ica l  and exper imenta l  values in a given case  
may  be for tui tous and hence,  the model may  only be cons idered  for  interpolat ion or computat ion.  A model  
based  on quali tat ive app rox ima te  e s t ima te s  of the complex  rea l  p r o c e s s e s  m a y  be cons idered  as  having 
phys ica l  bas i s  if the re la t ionships  obtained not only sa t i s fy  the exper imenta l  data ove r  a wide range  of v a r i -  
ab les  but a l so  do not lose  their  physical  s ignif icance when ext rapola ted  beyond the l imi t s  encompassed  by 
exper iment .  

1. De te rmina t ion  of Computat ional  Relat ionships .  Accounting for  the fact  that,  for  the d i spe r s e  
s y s t e m s  under  cons idera t ion  (d isperse  solid phase  - gas) ,  the t he rma l  conductivity of the solid phase  is 
4 to 5 o r d e r s  of magni tude lower  than that of the sy s t em as  a whole,  we s impl i fy  the initial se t  of d i f f e r -  
ential  equations for  unsteady hea t  conduction in a d i spe r s e  med ium and r e p r e s e n t  them in the fo rm 

clPl - = a *S (~2 - -  #1), (1) 
8~ 

0~2 ~ ~2 02~2 a*S(~o--~l) .  (2) 
c~p2 ax ax ~ - " 

This  s impl i f ied  se t  of equations co r re sponds  to a model of unsteady heat  conduction in a d i spe r s e  
med ium in which, in con t r a s t  to the initial one, [1, 8], one of the phases  (namely the solid phase)  is con-  
s idered  only a s  a t he rma l  sink while the second (gas) phase  de t e rmines  the molecu la r  t r a n s p o r t  of in ternal  
energy  within the sys t em.  

F r o m  sufficiently general  physical  cons idera t ions  it  follows that,  for  d i spe r s e  s y s t e m s  of the type, 
d i spe r s e  solid p h a s e - g a s ,  the s impl i f ied  model apparen t ly  co r r e sponds  c lose ly  to the physica l  na ture  of 
the p r o c e s s .  We note a lso  that these  cons idera t ions  a r e  conf i rmed  by some of the resu l t s  of this work.  

To find the solution to the se t  (1,2)  for  the boundary conditions 

~1 (x, O)---~2(x, O)= O; ~o (0, -c)= ~0; ~'~1( ~176 a:)= ~, (oo, "c)= 0 (3) 
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we t r a ns f o r m  it  to nondimensional form.  Since the sur face  a rea  of the par t i c les  per  unit volume may be 
de termined  as  S = 6 ( 1 - e ) / d p  (m2/m3), we wr i te  

~- x x 
(4) 

V ~2 dp dp 

cz*S 
t----- *=:6 (1 --  e) Nu* Fo--- A2Fo, (5) 

clPl 

01 (~, t ) =  #' (x, *) and 0., (~, t): e~(x, x) (6) 
~o ~o 

It follows f rom (4) and (5) that ~ is a measure  of the spacing in kernel  d iameters  (~ ~ x /dp)  and t is 
propor t ional  to the Four i e r  number.  

In new var iables  the initial equations (1) and (2) take the form 

001 = 02--01,  (7) 
at 

00o 0202 
" = - - - - 0 ~ + 0 1 ,  (8) 

Ot O~ z 

where/~ = cxp2/clp t is a nondimensioual p a r a m e t e r  (/~ << 1). The initial and boundary conditions a re  wri t ten  
in the following form:  

0,(~, 0) =0,(~: 0 ) = 0 ;  03(0, t ) =  I and 0,(co, t):=02(oo, t ) = 0 .  (9) 

The thermal  flux a t  the boundary of a surface  with constant  t empera tu re  and d isperse  medium is 

q(t) . . . .  X 00~ ~=~ = - .V; .~a*s  ~o oo2 (lO) 
o--~ - ~ = 0  

and the heat  t r a n s f e r  coefficient  is correspondingly  

a ( t ) ~ _ V - ~  0 ~ /  ( i i )  
[=o 

For convenience in comparison with experimental data, we introduce a nondimensional, time-dependent 
heat  t r a n s f e r  coeff icient  

N (t) -- a (t) .-= Nu Nu (12) 
V x-~*s ~ ~ (-1 - ~)Nu* A 

and, consequently,  

N (0 O0~(~, 0 I (13) I 

If we solve the se t  of differential  equations (7) and (8) under conditions (9) and place them in (13), we 
obtain the de s i r ed  dependence of Nussel t  number  on F o u r i e r  number.  However,  using operat ional  techniques,  
re la t ionship (13) may  be found without p r io r  solution of equations (7) and (8). 

We introduce the Laplace t r ans fo rms  of the functions 0 t and 02. Then Eqs. (7) and (8) take the form 

sY1 = Y~ - -  Y1 and ~tsY 2 --- d~Y~ Y* + Y1 (14) 
d~ ~ 

with boundary conditions 
1 

Y2(0, s) = ~ and Y2 (oo, s) = 0. (15) 
S 

Eliminating Yi f rom Eq. (14), we obtain 

d2Yo. 
d~,, 

1 ) Y~. (16) - -  :: l + v s  l + s  

Solution of Eq. (16} under conditions (15) has the form 
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and, consequently,  

Y~(~, s ) =  1 e x p - - ~  s (17) 
s 1 + s  . 

YI -- Y= (18) 
l + s  

Using Eq. (17) to obtain the form of the heat transfer coefficient we obtain, finally 

Q ( s ) = -  I V 1 4 - ~ + ~ s  (19) 
s l + s  

To find the initial conditions we rewr i t e  Eq. (19) in the form 

,, + _ ,  , 

where  (1 + # ) / #  is denoted by 2k. Using the integral  superposi t ion theorem and per fo rming  *,he e lementary  
t r ans fo rmat ions ,  we obtain the original  r epresen ta t ion  for (19) 

N ( 0 =  I / - V f e x p ( - - 0  ~___1+t~ ] 
1/ -~[ V7 2 ~  -A'j (21) 

where 
t 

J1 = ~ (t - -  ~)-1/2 exp [-- t + ,  (1 --  k)] [I o (k'r,) + I~ (k,)] dr. (22) 
0 

Using the asymptotic Bessel function expansion in Eq. (22) we obtain a convenient expression for numerical 
computations for large values of time in the form 

V ) ,  2 r 
The exper imental  data shown below in Fig. 1 for compar i son  a re  t ime-averaged  values of the heat 

t r a n s f e r  coefficient .  We obtain average  values of the nondimensional heat  t r ans fe r  coeff icient  N(t) by 
means  of integrat ion of the express ions  for the instantaneous values in the l imits  f rom t l to t 2 and then 
averaging over the given interval: 

t2 t~ 

, c VT t~ - - t i  3 
{t  t i  

' 7~2_ ~1 I eI'f (V'~-2) -- CFf(, ~11), ]-I- V'1~,2 -- ~tl I L'2 IF1 (1, , 2;--t2 )--~1 1P1 (~- , 2;--'1) ] �9 (24) 

Finally, with account of Eqs. (12) and (5) 

A 
~u_  Fo,-~o, { ~Iorf(A, ~oT)--o<AVF~)] 

1 A2Fo~) --  Fo, ,F1 ( 1 2; ~1-~-~ leo2 1F1( ~ - , 2;--  , --A2Fol) . (25) 

Equation (25) is useful for numerical  calculations for Fo > 7 �9 10 -3 to an e r r o r  not exceeding 5% for 
minimal  values of Fo, 

2, Analysis  of Theore t ica l  Relationships Obtained. Considerat ion of the theoret ical  re la t ionships  ob- 
tained shows that the assumed model is in accord  with exper imenta l  data and is physical ly c o r r e c t  if a num- 
ber  of compulsory  conditions a r e  fulfilled. 

i) Discrete test data in the literature pertaining to the time dependence of the heat transfer coefficient 
for various disperse materials and gases must fall on the general curve in Nu-Fo coordinates with the 

parameter #. 

2) Theoretical relationships at large values of time must revert to the relationship established from 

the theory of heat conduction of solid, single-phase media. 
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Actual ly ,  a s  t -~ oo (pract ica l ly  speaking for t > 40), it is poss ib le  to wr i te  the following express ion  
for  Eq. (23) us ing the asymptot ic  Besse l  r ep resen ta t ion  for  Eq. (23) 

V - ~  exp ( - - t ) V ' l + ~  
N ( t ) =  V u  + V ~ '  (26) 

which takes the following fo rm in the range  of t cons idered  

1 
N(0 = - ~ .  (27) 

T r a n s f o r m i n g  to dimensional  va r i ab l e s  we obtain 

a = l / ~ ( c l p l + q p ~ )  
(28) V g T  

Equation (28) is  the known dependence of heat  t r a n s f e r  coeff ic ient  on t ime  for  cooling of a constant  t e m p e r a -  
ture  pla te  in an  infinite continuous medium,  [2]. Along with this the asympto t ic  r ep re sen t a t i on  (26) bounds 
the region of appl icabi l i ty  of the se t  of different ia l  equations (1) and (2) for  d i s p e r s e  media  with smal l  values  
of/~ re la t ive  to unity.  

3) At  t - -  0 the heat  flux m u s t  be de te rmined  only by the physica l  p r o p e r t i e s  of the gas phase  s ince the 
t e m p e r a t u r e  field under  this condition is local ized within a thin l aye r  of the heat  exchange sur face  and does 
not "feel"  the effects  of the d i s p e r s e  phase .  

This  quali tat ive conclusion may  be conf i rmed analy t ica l ly  with the aid of the following example .  I t  is 
known, [3], that ,  if there  is a r ep re sen ta t i on  of some  function, then i ts  approx imate  express ion  for  smal l  
va lues  of t may  be  obtained by rep lac ing  the exact  express ion  by i ts  asympto t ic  approximat ion  for l a rge  
values  of s .  Exp re s s ion  (19) for s >> 1//z t r a n s f o r m s  to 

Q (s) = 

which c o r r e s p o n d s  to N(t) = ~ (for t << ~).  T r a n s f o r m i n g  to dimensional  va r i ab l e s  we obtain that ,  
for  T << c2p2/c~*S 

q l f l  ;~.,c#~ 
(29) 

For the intermediate region (i << s << 1/#) in which Q(s) = i / s  

N (t) = 1 = const. (30) 

T r a n s f o r m i n g  to dimensional  v a r i a b l e s  we obtain the following express ion  for  in te rmedia te  values of t ime  
[ ( c 2 p 2 / ~ * S )  << T << ( c i P l / ~ * S ) ]  

a = J--q = V12~'8, (31) 

i .e . ,  within a sufficiently l a rge  range  of var ia t ion  in nondimensional  t ime ,  the Nu number  mus t  r e m a i n  in-  
dependent  of t ime .  

We note that ,  on descr ib ing  the intensi ty of the t r a n s p o r t  p r o c e s s  for  widely vary ing  combinat ions of 
the rmophys ica l  and geomet r ic  p r o p e r t i e s  of d i spe r s e  s y s t e m s ,  i t  is n e c e s s a r y  to de te rmine  the value of a 
un iversa l  cons tan t  in addition to the known the rmophys iea l  p a r a m e t e r s  of the components  of the d i sp e r s e  
sys t em.  We shal l  cal l  this constant  the in te rphase  heat  t r a n s f e r  constant  

A -- V 6 (1 - -  e)Nu*. 

The poss ib i l i ty  of exper imenta l  de te rmina t ion  of the in te rphase  heat  t r a n s f e r  constant ,  which cannot 
be theore t ica l ly  de te rmined ,  p e r m i t s  Eq. (31) to be specif ied.  Actual ly ,  reducing Eq. (31) to nond imen-  
sional f o r m ,  we obtain 

Nu = W 6(1 - e)Nu* ~ A. (32) 

I t  follows f rom this that the in te rphase  heat  t r an s f e r  constant  (A) may  be found in t e s t s  d i rec ted  toward de -  
t e rmina t ion  of hea t  t r ans fe r  intensi ty a t  the su r face  for smal l  va lues  of Fo,  i .e . ,  under conditions of con-  

stant Nu. 
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Fig. i. Comparison of experimental and theoretical 

data. Disperse systems: I, 2) glass beads -air, dp 
= 0.38 and 0.475 mm respectively; 3-5) glass beads 

- Freon-12, dp = 0.147, 0.200, and 0.38 mm; 6, 7) 

glass beads - helium, dp -- 0.147 and 0.38 ram; 8) alu- 
mina powder -air, dp = 0.043 ram; 9) alumina powder 
- Freon-12, dp = 0.043 mm; i0) alumina powder 
-helium, dp = 0.043; ii) mica powder- air, particle 

size 0.014 mm; 12-14) slag beads -air, dp = 0.78 ram, 
1.2 ram, and 2.2 mm respectively. 

We note also that analysis of limiting transitions does not uncover the effects of # on the value of Nu 
for any values of Fo. Thus, condition (I) may be improved by formulating it in the following form: all test 

data must lie on a single curve of Nu = f(Fo) irrespective of the ratio of heat capacity of the phases. 

3. Comparison of Theoretical Relationships and Analytical Results with Experimental Data. Before 

proceeding to quantitative analysis of the theoretical relationships obtained, it is necessary to determine 

the value of the constant ~2, the effective heat conductance of the gas phase. We note at the outset that at 
present, in all probability, it is not possible to obtain the value of ~2 by a deductive method. In correspon- 
dence with the considered relaxation model in this work, it is assumed, to a first approximation, that the 
effective heat conductance of the gas may be determined as the effective heat conductance of a layer minus 
the heat conductance of this layer under vacuum conditions (i.e., from particle contacts) which is considered 
as the effective heat conductance of the solid phase. It should be noted that such a possibility of determining 
the effective heat conductance of a separate phase from the general effective heat conductance of the layer 

requires a sound basis. 

For comparison with theoretical values, widely known experimental data of Harakas and Beatty, [4], 
Botterill et al, [5] and Tamarin et al, [6] were taken from the special literature. The experimental data 

selected for comparison cover a wide range of variation in thermophysical properties of the solid and gas 
phase, particle dimensions and porosity. The experimental data of Ernst, [7], were not used for compari- 
son of experimental and theoretical values because of the author's error in estimating the value of ~ e as 

the result of which the values of ce = f(T) were sharply decreased IS]. 

The theoretical relationships obtained were generalized in Nu-Fo coordinates for qualitative compari- 

sons of the representations in [4-6] of the time-averaged heat transfer coefficients in annular, mixed layers. 
Results of computations from Eq. (25) are as follows: for Fo = 0.01, 0.I, 0.16, 0.25, 0.50, 1.0, 2.0, 3.0, 

5.0, and i0, N---~ = 2.0, 1.85, 1.75, 1.62, 1.36, 1.05, 0.77, 0.64, 0.49, and 0.32. 

Experimental and theoretical data compared in Fig. 1 show good correspondence between theory and 
experiment. The observed deviation of some test points from the theoretical curve occurs generally in the 
range of small values of Fo. This should not be related to the choice of coordinates since, as was shown 
previously [8], test data fall on one general curve in Nu-Fo coordinates for a properly constituted experi- 
ment. It should be noted that the deviation increases with decrease in particle diameter. This fact is found 
in correspondence with conclusions by the authors in [6] and [9] relating to the fact that, with increase in 
velocity (for constant values of Fo the relative calorimetric rate in a layer of much finer particles is higher), 

the possibility of separated flow, which leads to a decrease in heat flux, increases. 

As may be seen in Fig. i, for sufficiently large Fo, the theoretical points fall on a line characteristic 
for continuous, single-phase media which, to  a known degree, serves to confirm the choice of the value of 
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~2" AS the Fo number  d e c r e a s e s  the deviat ion of theore t ica l  (from the c l a s s i c  Four i e r  different ial  heat  
conduction equation) and t e s t  data i n c r e a s e s .  He re ,  in a suff icient ly b road  range  of p rac t i ca l  in te res t  for  
va lues  of Fo ,  the numer ica l  values  of Nu number  r e m a i n  constant  and near ly  equal to 2 (NUll m = A = 2) 
which also follows in cor respondence  with the ana lys i s  conducted above.  

In conclusion i t  should be noted that choice of an interpolat ion re la t ionship  for  the analyt ical  e x p r e s -  
sions obtained m a y  resu l t  in a s ignif icant  s impl i f icat ion.  In f i r s t  approx imat ion  this may  be done on the 
bas i s  of qual i ta t ive e s t ima te s .  The interpolat ion equation for  ve ry  smal l  Fo reduces  to N(t) = v ~ ,  
and for  l a rge  values  of Fo to Eq. (27) and is m o s t  s imply  r ep re sen t ed  in the fo rm 

N (t) = 1 -? at"  (33) 

In o rde r  that  Eq. (33) yield N(t) = 1 in the space  i t  is n e c e s s a r y  to choose an index of degree  n = 1 / 2 ,  
i .e . ,  

N (t) = l' Ix -f- V (I + Ix)at (34) 
i :z~-b at 

Actual ly ,  for # << t << 1, we have t << V-t, but ~ >> ~Y/z and,  consequently,  

N (t) V ~  ]fl (1 -t- Ix) t -~ ~ V1 + ~ ~ l, (35) 
V~- V7 

which a g r e e s  with Eq. (30) and, s ince # ~ 1 �9 10 -~, then the in terval  of constant  Nu number  m u s t  be not l e s s  
than two o r d e r s  of magnitude;  this is a lso  conf i rmed exper imenta l ly .  I t  should be noted, however ,  that Eq. 
(34), which was  wr i t t en  on the bas i s  of providing an in terpola t ive  e s t ima te ,  is only useful  for  quali tat ive 
i l lus t ra t ion.  We also note that ,  with fur ther  s impl i f ica t ion,  Eq. (34) t r a n s f o r m s  to the express ion  

Y (t) = V ~ l ~  (36) 
+ VY{'  

which is a modif icat ion of the Baskakov equation which he p re sen ted  in a d i scuss ion  a t  the Third  All-Union 
Conference  on Heat  and Mass  T r a n s f e r  (Minsk, 1968) [10]. 

clP 1 
C2P2 

T 

0/, Or* 

dp 
Nu = s a p / ~  
F o  = ~2 r / ( c t P l  + ea&)d~ 
I0(x) 
Ii (x) 
erf(x) 

NOTATION 

is the volume heat capacity of the solid phase (clp i = csp s( I- e)); 
is the volume heat capacity of the gas phase (c2p 2 = cgp gg); 
is the temperature; 
is the time; 
is the porosityl 
are the heat transfer coefficient transfer coefficient between the disperse mate- 
rial layer and the surface and the interphase heat transfer coefficient, respectively; 
is the particle diameter; 
is the Nusselt number; 
is the Fourier number; 
is the modified zero-order Bessel function of the first kind; 
is the modified first-order Bessel function of the first kind; 
is the Cramp function. 

i. 

2. 
3. 

4, 
5. 

LITERATURE CITED 

N. V. Antonishin,  L . E .  Simchenko, andG.  A. Surkov,  in: Invest igat ion of Heat  and Mass  T r a n s f e r  
in Technological  P r o c e s s e s  and Devices  [in Russ ian] ,  Nauka i Tekhnika,  Minsk (1966). 
A. V. Lykov,  The rm a l  Conductance of Unsteady P r o c e s s e s  [in Russian] ,  GEI (1948). 
A. M. Ef ros  and A. M. Danf levski i ,  Operat ional  Computat ions and Contour In tegra l s  [in Russian] ,  
ONTI Ukrainy,  Kharkov (1937). 
N. K. Ha rakas  and K. O. Beat ty ,  Chem. Eng, P rog .  Symp. ,  59, No. 4 (1963). 
I .  S. M. Bot te r i l l ,  J .  L. Cain,  J .  W. Brundre t t ,  and D. E. Ell iot ,  P a p e r  p re sen ted  a t  the Symposium 
on Developments  in F l u i d -P a r t i c l e  Technology,  Boston,  Mass . ,  December  (1954). 

564 



6. A.I. Tamarin, V. D. Dunskii, and L. V. Gorbaehev, Inzh. Fiz. Zhur., 13, No. 4 (1967). 
7. R. Ernst, Chem. Eng. Tech., 31, No. 3 (1959). 
8. L.E. Simehenko, Thesis Candidates'Reference Handbook [in Russian], ITMO AN BSSR (1968). 
9. I.P. Coudere, H. Angelino, andM. Enjalbert, Chem. Eng. Sei., 21, No. 6/7 (1966). 

I0. A.P. Baskakov, Heat and Mass Transfer, Vol. ii [in Russian], Discussion at the Third All-Union 
Conference on Heat and Mass Transfer, ITMO AN BSSR, Minsk (1969). 

565 


